Skip to main content
Oak Ridge High School student is working on an 3D printing machine donated by UT-Battelle

UT-Battelle has contributed up to $475,000 for the purchase and installation of advanced manufacturing equipment to support a program at Tennessee’s Oak Ridge High School that gives students direct experience with the AI- and robotics-assisted workplace of the future. 

Illustration of a real-time simulation showing a metallic nanoparticle’s optical response to light using RT-TDDFT. The image depicts electron oscillations and surrounding electromagnetic fields. Four inset panels represent applications: plasmon-enhanced biosensing, quantum computing, photochemical catalysis, and cancer detection through photothermal therapy.

A research team from the Department of Energy’s Oak Ridge National Laboratory, in collaboration with North Carolina State University, has developed a simulation capable of predicting how tens of thousands of electrons move in materials in real time, or natural time rather than compute time.

The heartbeat Detector is pictured here, which is a black rectangular box with a heartbeat line and wording on the top to reflect its name

The Heartbeat Detector, developed at ORNL and licensed by Geovox Security Inc., detects hidden individuals in vehicles by measuring suspension vibrations. Now using a compact black box and cloud software, the system is more affordable and easier to use, while remaining the industry standard worldwide.

Illustration of the GRETA detector, a spherical array of metal cylinders. The detector is divided into two halves to show the inside of the machine. Both halves are attached to metal harnesses, displayed against a black and green cyber-themed background.

Analyzing massive datasets from nuclear physics experiments can take hours or days to process, but researchers are working to radically reduce that time to mere seconds using special software being developed at the Department of Energy’s Lawrence Berkeley and Oak Ridge national laboratories.  

Two ORNL researchers are standing to the right of a computer screen and a poster promoting the AI Expo

The Department of Energy’s Oak Ridge National Laboratory gathered more than 200 artificial intelligence experts and domain scientists for an AI expo exploring cutting edge artificial intelligence that’s making a difference for scientific research institutions around the world.

Artist's rendering depicts a cantilever's sharp tip in an atomic force microscope scanning a material's surface to measure domain wall movement

As demand for energy-intensive computing grows, researchers at ORNL have developed a new technique that lets scientists see how interfaces move in promising materials for computing and other applications. The method, now available to users at the Center for Nanophase Materials Sciences at ORNL, could help design dramatically more energy-efficient technologies.

Image of the Frontier supercomputer in black with Frontier spelled out across the cabinets in front.

Research teams at the Department of Energy’s Oak Ridge National Laboratory received computing resource awards to train and test AI foundation models for science. A total of six ORNL projects were awarded allocations from the National Artificial Intelligence Research Resource, or NAIRR, pilot and the Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program to train their AI models.

A 3D printing nozzle wrapped in insulation extrudes black composite material into a small square mold on a green and white flat surface in a lab setting. Inset shows a close-up of a pressure gauge connected to brass valves and tubing.

Scientists at ORNL have developed a vacuum-assisted extrusion method that reduces internal porosity by up to 75% in large-scale 3D-printed polymer parts. This new technique addresses the critical issue of porosity in large-scale prints but also paves the way for stronger composites. 

ORNL researcher Jesse Labbe is working with plants in a greenhouse. He is framed on all sides with bright green leaves

Jesse Labbé aims to leverage biology, computation and engineering to address societal challenges related to energy, national security and health, while enhancing U.S. competitiveness. Labbé emphasizes the importance of translating groundbreaking research into practical applications that have real-world impact.

Illustration of a glowing black box emitting digital particles that form into a 3D model of an electrical grid infrastructure, set against a background of binary code and data visualizations.

Researchers at Oak Ridge National Laboratory have developed a modeling method that uses machine learning to accurately simulate electric grid behavior while protecting proprietary equipment details. The approach overcomes a key barrier to accurate grid modeling, helping utilities plan for future demand and prevent blackouts.