Skip to main content
 Illustration of a laser-based analytical method to accelerate understanding of critical plant and soil properties with the aim of co-optimizing bioenergy plant growth and soil carbon storage

Oak Ridge National Laboratory researchers recently demonstrated use of a laser-based analytical method to accelerate understanding of critical plant and soil properties that affect bioenergy plant growth and soil carbon storage.

Herwig shared the impacts of neutron science with Secretary of Energy Jennifer Granholm during a tour of SNS in November 2021. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Ken Herwig's scientific drive crystallized in his youth when he solved a tough algebra word problem in his head while tossing newspapers from his bicycle. He said the joy he felt in that moment as a teenager fueled his determination to conquer mathematical mysteries. And he did.

Simulations performed on Oak Ridge National Laboratory’s Summit supercomputer generated one of the most detailed portraits to date of how turbulence disperses heat through ocean water under realistic conditions. Credit: Miles Couchman

Simulations performed on the Summit supercomputer at ORNL revealed new insights into the role of turbulence in mixing fluids and could open new possibilities for projecting climate change and studying fluid dynamics.

ORNL’s Yun Liu stands before one of the 10 laser comb-based beam diagnostics stations at the Spallation Neutron Source. The laser comb solves the longstanding problem of measuring changes in the beam across time. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

When opportunity meets talent, great things happen. The laser comb developed at ORNL serves as such an example.

ORNL researchers, from left, Yang Liu, Xiaohan Yang and Torik Islam, collaborated on the development of a new capability to insert multiple genes simultaneously for fast, efficient transformation of plants into better bioenergy feedstocks. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

In a discovery aimed at accelerating the development of process-advantaged crops for jet biofuels, scientists at ORNL developed a capability to insert multiple genes into plants in a single step.

Radu Custelcean's sustainable chemistry for capturing carbon dioxide from air has been licensed to Holocene. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An innovative and sustainable chemistry developed at ORNL for capturing carbon dioxide has been licensed to Holocene, a Knoxville-based startup focused on designing and building plants that remove carbon dioxide

Jerry Parks leads the Molecular Biophysics group at ORNL, leveraging his expertise in computational chemistry and bioinformatics to unlock the inner workings of proteins—molecules that govern cellular structure and function and are essential to life. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

When reading the novel Jurassic Park as a teenager, Jerry Parks found the passages about gene sequencing and supercomputers fascinating, but never imagined he might someday pursue such futuristic-sounding science.

Researchers Melissa Cregger, left, and Xiaohan Yang examine plants in an ORNL greenhouse where biosensors are installed to accelerate plant transformations. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy.

Nature-based solutions are an effective tool to combat climate change triggered by rising carbon emissions, whether it’s by clearing the skies with bio-based aviation fuels or boosting natural carbon sinks.

The research team poses in front of the airboat after a long day of research. Credit: ORNL, U.S. Dept. of Energy

As a biogeochemist at ORNL, Matthew Berens studies how carbon, nutrients and minerals move through water and soil. In this firsthand account, Berens describes recent fieldwork in Louisiana with colleagues.

Colleen Iversen is the new director of NGEE Arctic, leading a large cross-disciplinary team of scientists in pursuit of a better understanding of Arctic climate processes. Credit: ORNL, U.S. Dept. of Energy

Colleen Iversen, ecosystem ecologist, group leader and distinguished staff scientist, has been named director of the Next-Generation Ecosystem Experiments Arctic, or NGEE Arctic, a multi-institutional project studying permafrost thaw and other climate-related processes in Alaska.