Skip to main content
Frontier has arrived, and ORNL is preparing for science on Day One. Credit: Carlos Jones/ORNL, Dept. of Energy

The Frontier supercomputer at the Department of Energy’s Oak Ridge National Laboratory earned the top ranking today as the world’s fastest on the 59th TOP500 list, with 1.1 exaflops of performance. The system is the first to achieve an unprecedented level of computing performance known as exascale, a threshold of a quintillion calculations per second.

A smart approach to microscopy and imaging developed at Oak Ridge National Laboratory could drive discoveries in materials for future technologies. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are teaching microscopes to drive discoveries with an intuitive algorithm, developed at the lab’s Center for Nanophase Materials Sciences, that could guide breakthroughs in new materials for energy technologies, sensing and computing.

ORNL, VA and Harvard researchers developed a sparse matrix full of anonymized information on what is thought to be the largest cohort of healthcare data used for this type of research in the U.S. The matrix can be probed with different methods, such as KESER, to gain new insights into human health. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

A team of researchers has developed a novel, machine learning–based  technique to explore and identify relationships among medical concepts using electronic health record data across multiple healthcare providers.

Dongarra in 2019 with Oak Ridge National Laboratory's Summit supercomputer

A force within the supercomputing community, Jack Dongarra developed software packages that became standard in the industry, allowing high-performance computers to become increasingly more powerful in recent decades.

ORNL’s Joseph Lukens runs experiments in an optics lab. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Scientists’ increasing mastery of quantum mechanics is heralding a new age of innovation. Technologies that harness the power of nature’s most minute scale show enormous potential across the scientific spectrum

QLAN submit - A team from the U.S. Department of Energy’s Oak Ridge National Laboratory, Stanford University and Purdue University developed and demonstrated a novel, fully functional quantum local area network, or QLAN, to enable real-time adjustments to information shared with geographically isolated systems at ORNL using entangled photons passing through optical fiber. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A rapidly emerging consensus in the scientific community predicts the future will be defined by humanity’s ability to exploit the laws of quantum mechanics.

The Energy Exascale Earth System Model project reliably simulates aspects of earth system variability and projects decadal changes that will critically impact the U.S. energy sector in the future. A new version of the model delivers twice the performance of its predecessor. Credit: E3SM, Dept. of Energy

A new version of the Energy Exascale Earth System Model, or E3SM, is two times faster than an earlier version released in 2018.

This protein drives key processes for sulfide use in many microorganisms that produce methane, including Thermosipho melanesiensis. Researchers used supercomputing and deep learning tools to predict its structure, which has eluded experimental methods such as crystallography.  Credit: Ada Sedova/ORNL, U.S. Dept. of Energy

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory and the Georgia Institute of Technology is using supercomputing and revolutionary deep learning tools to predict the structures and roles of thousands of proteins with unknown functions.

Miaofang Chi, a scientist in the Center for Nanophase Materials Sciences, received the 2021 Director’s Award for Outstanding Individual Accomplishment in Science and Technology. Credit: ORNL, U.S. Dept. of Energy

A world-leading researcher in solid electrolytes and sophisticated electron microscopy methods received Oak Ridge National Laboratory’s top science honor today for her work in developing new materials for batteries. The announcement was made during a livestreamed Director’s Awards event hosted by ORNL Director Thomas Zacharia.

Watermarks, considered the most efficient mechanisms for tracking how complete streaming data processing is, allow new tasks to be processed immediately after prior tasks are completed. Image Credit: Nathan Armistead, ORNL

A team of collaborators from ORNL, Google Inc., Snowflake Inc. and Ververica GmbH has tested a computing concept that could help speed up real-time processing of data that stream on mobile and other electronic devices.