Skip to main content
ORNL is again hosting a workshop focused on the next generation of molten salt reactors.

Experts focused on the future of nuclear technology will gather at Oak Ridge National Laboratory for the fourth annual Molten Salt Reactor Workshop on October 3–4.

A simulation of runaway electrons in the experimental tokamak at the DIII-D National Fusion Facility at General Atomics shows the particle orbits in the fusion plasma and the synchrotron radiation emission patterns. Credit: Oak Ridge National Laboratory,

Fusion scientists from Oak Ridge National Laboratory are studying the behavior of high-energy electrons when the plasma that generates nuclear fusion energy suddenly cools during a magnetic disruption. Fusion energy is created when hydrogen isotopes are heated to millions of degrees...

ORNL’s new salt purification lab offers tools to make and purify the salt and perform corrosion testing, which are essential steps in qualifying molten salt reactor technologies for commercial use. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory has developed a salt purification lab to study the viability of using liquid salt that contains lithium fluoride and beryllium fluoride, known as FLiBe, to cool molten salt reactors, or MSRs. Multiple American companies developing advanced reactor technol...

Oak Ridge National Laboratory used neutrons to evaluate the behavior of ions adsorbed on the external surfaces onion-like carbon electrodes and determine the right balance of two liquid salts that yields optimal energy storage potential.

Energy storage could get a boost from new research of tailored liquid salt mixtures, the components of supercapacitors responsible for holding and releasing electrical energy. Oak Ridge National Laboratory’s Naresh Osti and his colleagues used neutrons at the lab’s Spallation Neutron ...

Kevin Robb, a staff scientist at the Department of Energy’s Oak Ridge National Laboratory, is taking what he learned from developing the Liquid Salt Test Loop—a key tool in deploying molten salt technology applications

Thanks in large part to developing and operating a facility for testing molten salt reactor (MSR) technologies, nuclear experts at the Energy Department’s Oak Ridge National Laboratory (ORNL) are now tackling the next generation of another type of clean energy—concentrating ...

A conceptual illustration of proton-proton fusion in which two protons fuse to form a deuteron. Image courtesy of William Detmold.

Nuclear physicists are using the nation’s most powerful supercomputer, Titan, at the Oak Ridge Leadership Computing Facility to study particle interactions important to energy production in the Sun and stars and to propel the search for new physics discoveries Direct calculatio...

The interior of the Massachusetts Institute of Technology’s (MIT’s) Alcator C-Mod tokamak. A team led by Princeton Plasma Physics Laboratory’s C.S. Chang recently used the Titan supercomputer

The same fusion reactions that power the sun also occur inside a tokamak, a device that uses magnetic fields to confine and control plasmas of 100-plus million degrees. Under extreme temperatures and pressure, hydrogen atoms can fuse together, creating new helium atoms and simulta...

Pellet selector

When it’s up and running, the ITER fusion reactor will be very big and very hot, with more than 800 cubic meters of hydrogen plasma reaching 170 million degrees centigrade. The systems that fuel and control it, on the other hand, will be small and very cold. Pellets of frozen gas will be shot int...

ORNL Image

ITER, the international fusion research facility now under construction in St. Paul-lez-Durance, France, has been called a puzzle of a million pieces. US ITER staff at Oak Ridge National Laboratory are using an affordable tool—desktop three-dimensional printing, also known as additive printing—to help them design and configure components more efficiently and affordably.