Skip to main content
Kaushik Biswas is a mechanical engineer in the Building Envelope & Urban Systems Research Group at Oak Ridge National Laboratory.

Inspiration often strikes in the unlikeliest of places and for Kaushik Biswas, a mechanical engineer in ORNL’s Building Envelope & Urban Systems Research Group, a moment spent enjoying entertainment led to the idea of developing self-healing vacuum panels for buildings. “I was ...

Oak Ridge National Laboratory researcher Arnab Banerjee has charted several accomplishments in his neutron studies of quantum phenomena.

Raman. Heisenberg. Fermi. Wollan. From Kolkata to Göttingen, Chicago to Oak Ridge. Arnab Banerjee has literally walked in the footsteps of some of the greatest pioneers in physics history—and he’s forging his own trail along the way. Banerjee is a staff scientist working in the Neu...

Julie Smith

It may take a village to raise a child, according to the old proverb, but it takes an entire team of highly trained scientists and engineers to install and operate a state-of-the-art, exceptionally complex ion microprobe. Just ask Julie Smith, a nuclear security scientist at the Depa...

Composites scientist and engineer Vlastimil Kunc with the latest large-scale 3Dprinter at the MDF.

Vlastimil Kunc grew up in a family of scientists where his natural curiosity was encouraged—an experience that continues to drive his research today in polymer composite additive manufacturing at Oak Ridge National Laboratory. “I’ve been interested in the science of composites si...

Germina Ilas (left) and Ian Gauld review spent fuel data entries in the SFCOMPO 2.0 database.
Oak Ridge National Laboratory provided significant contributions and coordination in the development of the Nuclear Energy Agency’s (NEA’s) recently released Spent Fuel Isotopic Composition (SFCOMPO) 2.0—the world’s largest open database for spent
ORNL researcher Miaofang Chi refines her microscopy techniques toward understanding how and why materials have certain properties.

Material surfaces and interfaces may appear flat and void of texture to the naked eye, but a view from the nanoscale reveals an intricate tapestry of atomic patterns that control the reactions between the material and its environment. Electron microscopy allows researchers to probe...

ORNL’s Xiahan Sang unambiguously resolved the atomic structure of MXene, a 2D material promising for energy storage, catalysis and electronic conductivity. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Carlos Jones

Researchers have long sought electrically conductive materials for economical energy-storage devices. Two-dimensional (2D) ceramics called MXenes are contenders. Unlike most 2D ceramics, MXenes have inherently good conductivity because they are molecular sheets made from the carbides ...

Advanced materials take flight in the LEAP engine, featuring ceramic matrix composites developed over a quarter-century by GE with help from DOE and ORNL. Image credit: General Electric

Ceramic matrix composite (CMC) materials are made of coated ceramic fibers surrounded by a ceramic matrix. They are tough, lightweight and capable of withstanding temperatures 300–400 degrees F hotter than metal alloys can endure. If certain components were made with CMCs instead o...

Pellet selector

When it’s up and running, the ITER fusion reactor will be very big and very hot, with more than 800 cubic meters of hydrogen plasma reaching 170 million degrees centigrade. The systems that fuel and control it, on the other hand, will be small and very cold. Pellets of frozen gas will be shot int...

Processing plutonium-238

Since its 1977 launch, NASA’s Voyager 1 spacecraft has travelled farther than any other piece of human technology. It is also the only human-made object to have entered interstellar space. More recently, the agency’s New Horizons mission flew past Pluto on July 14, giving us our first close-up lo...