Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 10 Results

Argon pellet injection text

As scientists study approaches to best sustain a fusion reactor, a team led by Oak Ridge National Laboratory investigated injecting shattered argon pellets into a super-hot plasma, when needed, to protect the reactor’s interior wall from high-energy runaway electrons.

SNS researchers

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.

Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.

Tyler Gerczak, a materials scientist at Oak Ridge National Laboratory, is focused on post-irradiation examination and separate effects testing of current fuels for light water reactors and advanced fuel types that could be used in future nuclear systems. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Ask Tyler Gerczak to find a negative in working at the Department of Energy’s Oak Ridge National Laboratory, and his only complaint is the summer weather. It is not as forgiving as the summers in Pulaski, Wisconsin, his hometown.

Nuclear—Tiny testing fuels

For the first time, Oak Ridge National Laboratory has completed testing of nuclear fuels using MiniFuel, an irradiation vehicle that allows for rapid experimentation.

Materials—Engineering heat transport

Scientists have discovered a way to alter heat transport in thermoelectric materials, a finding that may ultimately improve energy efficiency as the materials convert heat flow into electricity.

Snowflakes indicate phases of super-cold ice

An ORNL-led team's observation of certain crystalline ice phases challenges accepted theories about super-cooled water and non-crystalline ice. Their findings, reported in the journal Nature, will also lead to better understanding of ice and its various phases found on other planets, moons and elsewhere in space.

The illustrations show how the correlation between lattice distortion and proton binding energy in a material affects proton conduction in different environments. Mitigating this interaction could help researchers improve the ionic conductivity of solid materials.

Ionic conduction involves the movement of ions from one location to another inside a material. The ions travel through point defects, which are irregularities in the otherwise consistent arrangement of atoms known as the crystal lattice. This sometimes sluggish process can limit the performance and efficiency of fuel cells, batteries, and other energy storage technologies.

Researchers analyzed the oxygen structure (highlighted in red) found in a perovskite’s crystal structure at room temperature, 500°C and 900°C using neutron scattering at ORNL’s Spallation Neutron Source. Analyzing how these structures impact solid oxide f

A University of South Carolina research team is investigating the oxygen reduction performance of energy conversion materials called perovskites by using neutron diffraction at Oak Ridge National Laboratory’s Spallation Neutron Source.

COHERENT collaborators were the first to observe coherent elastic neutrino–nucleus scattering. Their results, published in the journal Science, confirm a prediction of the Standard Model and establish constraints on alternative theoretical models. Image c

After more than a year of operation at the Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL), the COHERENT experiment, using the world’s smallest neutrino detector, has found a big fingerprint of the elusive, electrically neutral particles that interact only weakly with matter.