Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 52 Results

An Oak Ridge National Laboratory-led research team used a sophisticated X-ray scattering technique to visualize and quantify the movement of water molecules in space and time, which provides new insights that may open pathways for liquid-based electronics
A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.
Neutrons probed two mechanisms proposed to explain what happens when hydrogen gas flows over a cerium oxide (CeO2) catalyst that has been heated in an experimental chamber to different temperatures to change its oxidation state. The first mechanism sugges
Having the right tool for the job enabled scientists at the Department of Energy’s Oak Ridge National Laboratory and their collaborators to discover that a workhorse catalyst of vehicle exhaust systems—an “oxygen sponge” that can soak up oxygen from air and store it for later use in oxidation reactions—may also be a “hydrogen sponge.”
How perovskite catalysts are made and treated changes their surface compositions and ultimate product yields. If certain perovskite catalysts of the formula ABO3 are heat-treated, the catalyst’s surface terminates predominantly with A (a rare-earth metal

For some crystalline catalysts, what you see on the surface is not always what you get in the bulk, according to two studies led by the Department of Energy’s Oak Ridge National Laboratory. The investigators discovered that treating a complex 

Spin-polarized_4-probe_STM_ORNL_2.jpg
A new method that precisely measures the mysterious behavior and magnetic properties of electrons flowing across the surface of quantum materials could open a path to next-generation electronics. A team of scientists has developed an innovative microscopy technique to detect the spin of electrons in topological insulators, a new kind of quantum material that could be used in applications such as spintronics and quantum computing.
ORNL welcomed its first group of research fellows to join Innovation Crossroads, an entrepreneurial research and development program based at the lab.
Oak Ridge National Laboratory today welcomed the first cohort of innovators to join Innovation Crossroads, the Southeast region's first entrepreneurial research and development program based at a U.S. Department of Energy national laboratory. Innovation Crossroads, ...
This graphene nanoribbon was made bottom-up from a molecular precursor. Nanoribbon width and edge effects influence electronic behavior. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy.
A new way to grow narrow ribbons of graphene, a lightweight and strong structure of single-atom-thick carbon atoms linked into hexagons, may address a shortcoming that has prevented the material from achieving its full potential in electronic applications. Graphene n...
Depicted at left, small nanoparticles stick to segments of polymer chain that are about the same size as the nanoparticles themselves; these interactions produce a polymer nanocomposite that is easier to process because nanoparticles move fast, quickly ma
Polymer nanocomposites mix particles billionths of a meter (nanometers, nm) in diameter with polymers, which are long molecular chains. Often used to make injection-molded products, they are common in automobiles, fire retardants, packaging materials, drug-delivery systems, medical devices, coatings, adhesives, sensors, membranes and consumer goods.
A study led by Oak Ridge National Laboratory subjected tungsten to low energies, akin to normal operations of a fusion reactor (left), and high energies emulating plasma disruptions (right).
A fusion reactor is essentially a magnetic bottle containing the same processes that occur in the sun. Deuterium and tritium fuels fuse to form a vapor of helium ions, neutrons and heat. As this hot, ionized gas—called plasma—burns, that heat is transferred to water t...
Periodic table_large
Tennessee Gov. Bill Haslam visited the Department of Energy’s Oak Ridge National Laboratory today to congratulate the ORNL team involved in the discovery of the element tennessine, named in recognition of the vital contributions of the state of Tennessee to the int...
Carbon_dioxide_direct_air_capture
Scientists at the Department of Energy’s Oak Ridge National Laboratory have found a simple, reliable process to capture carbon dioxide directly from ambient air, offering a new option for carbon capture and storage strategies to combat global warming. Initia...