Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- James A Haynes
- Ryan Dehoff
- Sumit Bahl
- Ying Yang
- Adam Stevens
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alice Perrin
- Andres Marquez Rossy
- Bekki Mills
- Ben Lamm
- Beth L Armstrong
- Brian Post
- Bruce A Pint
- Christopher Fancher
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- John Wenzel
- Jovid Rakhmonov
- Keju An
- Mark Loguillo
- Matthew B Stone
- Meghan Lamm
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shajjad Chowdhury
- Shannon M Mahurin
- Steven J Zinkle
- Sudarsanam Babu
- Sunyong Kwon
- Tao Hong
- Tim Graening Seibert
- Tolga Aytug
- Tomonori Saito
- Victor Fanelli
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yanli Wang
- Yukinori Yamamoto
- Yutai Kato

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.