Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Alexey Serov
- Jaswinder Sharma
- Soydan Ozcan
- Xiang Lyu
- Xianhui Zhao
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Roschli
- Amit K Naskar
- Bekki Mills
- Beth L Armstrong
- Erin Webb
- Evin Carter
- Gabriel Veith
- Georgios Polyzos
- Halil Tekinalp
- Holly Humphrey
- James Szybist
- Jeremy Malmstead
- John Wenzel
- Jonathan Willocks
- Junbin Choi
- Keju An
- Khryslyn G Araño
- Kitty K Mccracken
- Logan Kearney
- Mark Loguillo
- Marm Dixit
- Matthew B Stone
- Meghan Lamm
- Mengdawn Cheng
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Ritu Sahore
- Sanjita Wasti
- Shannon M Mahurin
- Tao Hong
- Todd Toops
- Tomonori Saito
- Tyler Smith
- Victor Fanelli

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Neutron beams are used around the world to study materials for various purposes.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.