Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Mike Zach
- Alexander I Kolesnikov
- Alexei P Sokolov
- Andrew F May
- Bekki Mills
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- John Wenzel
- Justin Griswold
- Keju An
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark Loguillo
- Matthew B Stone
- Nedim Cinbiz
- Nithin Panicker
- Padhraic L Mulligan
- Prashant Jain
- Sandra Davern
- Shannon M Mahurin
- Tao Hong
- Tomonori Saito
- Tony Beard
- Victor Fanelli
- Vittorio Badalassi

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Neutron beams are used around the world to study materials for various purposes.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.