Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Andrzej Nycz
- Blane Fillingim
- Brian Post
- Chris Masuo
- Lauren Heinrich
- Luke Meyer
- Peeyush Nandwana
- Sergei V Kalinin
- Sudarsanam Babu
- Thomas Feldhausen
- William Carter
- Yousub Lee
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Anton Ievlev
- Bekki Mills
- Bogdan Dryzhakov
- Bruce Hannan
- Dave Willis
- John Wenzel
- Joshua Vaughan
- Keju An
- Kevin M Roccapriore
- Liam Collins
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Marti Checa Nualart
- Matthew B Stone
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Peter Wang
- Polad Shikhaliev
- Ramanan Sankaran
- Shannon M Mahurin
- Stephen Jesse
- Steven Randolph
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vimal Ramanuj
- Vladislav N Sedov
- Wenjun Ge
- Yacouba Diawara
- Yongtao Liu
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Neutron beams are used around the world to study materials for various purposes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.