Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Yong Chae Lim
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Rangasayee Kannan
- Sergei V Kalinin
- Stephen Jesse
- William Carter
- Adam Stevens
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bekki Mills
- Bogdan Dryzhakov
- Brian Post
- Bruce Hannan
- Bryan Lim
- Dave Willis
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Jiheon Jun
- John Wenzel
- Joshua Vaughan
- Kai Li
- Kashif Nawaz
- Keju An
- Kevin M Roccapriore
- Liam Collins
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Marti Checa Nualart
- Matthew B Stone
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Peeyush Nandwana
- Peter Wang
- Polad Shikhaliev
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Saban Hus
- Sarah Graham
- Shannon M Mahurin
- Steven Randolph
- Sudarsanam Babu
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomas Grejtak
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- William Peter
- Yacouba Diawara
- Yiyu Wang
- Yongtao Liu
- Yukinori Yamamoto
- Yun Liu
- Zhili Feng

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Neutron beams are used around the world to study materials for various purposes.