Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Srikanth Yoginath
- Andrzej Nycz
- Blane Fillingim
- Brian Post
- Chris Masuo
- James J Nutaro
- Lauren Heinrich
- Luke Meyer
- Peeyush Nandwana
- Pratishtha Shukla
- Sudarsanam Babu
- Sudip Seal
- Thomas Feldhausen
- William Carter
- Yousub Lee
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alexei P Sokolov
- Alex Walters
- Ali Passian
- Bekki Mills
- Bruce Hannan
- Costas Tsouris
- Dave Willis
- Debangshu Mukherjee
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- John Wenzel
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Md Inzamam Ul Haque
- Nance Ericson
- Olga S Ovchinnikova
- Peter Wang
- Polad Shikhaliev
- Radu Custelcean
- Ramanan Sankaran
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Varisara Tansakul
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vimal Ramanuj
- Vladislav N Sedov
- Wenjun Ge
- Yacouba Diawara
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Neutron beams are used around the world to study materials for various purposes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.