Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Andrzej Nycz
- Chris Masuo
- Jamieson Brechtl
- Kashif Nawaz
- Luke Meyer
- Sergei V Kalinin
- Stephen Jesse
- Tomonori Saito
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bekki Mills
- Bogdan Dryzhakov
- Bruce Hannan
- Dave Willis
- Diana E Hun
- Easwaran Krishnan
- Hoyeon Jeon
- Huixin (anna) Jiang
- James Manley
- Jewook Park
- Joe Rendall
- John Wenzel
- Joshua Vaughan
- Kai Li
- Karen Cortes Guzman
- Keju An
- Kevin M Roccapriore
- Kuma Sumathipala
- Liam Collins
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Marti Checa Nualart
- Matthew B Stone
- Maxim A Ziatdinov
- Mengjia Tang
- Muneeshwaran Murugan
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Peter Wang
- Polad Shikhaliev
- Saban Hus
- Shannon M Mahurin
- Steven Randolph
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yongtao Liu
- Yun Liu
- Zoriana Demchuk

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Neutron beams are used around the world to study materials for various purposes.