Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Sam Hollifield
- Andrzej Nycz
- Chad Steed
- Chris Masuo
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Junghoon Chae
- Luke Meyer
- Mingyan Li
- Scott Smith
- Travis Humble
- William Carter
- Aaron Werth
- Akash Jag Prasad
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Ali Passian
- Bekki Mills
- Brian Gibson
- Brian Post
- Brian Weber
- Bruce Hannan
- Calen Kimmell
- Dave Willis
- Emilio Piesciorovsky
- Emma Betters
- Gary Hahn
- Greg Corson
- Harper Jordan
- Isaac Sikkema
- Jason Jarnagin
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- John Wenzel
- Joseph Olatt
- Josh B Harbin
- Joshua Vaughan
- Keju An
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Loren L Funk
- Luke Chapman
- Luke Koch
- Mahim Mathur
- Mark Loguillo
- Mark Provo II
- Mary A Adkisson
- Matthew B Stone
- Nance Ericson
- Oscar Martinez
- Peter Wang
- Polad Shikhaliev
- Raymond Borges Hink
- Rob Root
- Samudra Dasgupta
- Shannon M Mahurin
- Srikanth Yoginath
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- T Oesch
- Tomonori Saito
- Tony L Schmitz
- Varisara Tansakul
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladimir Orlyanchik
- Vladislav N Sedov
- Yacouba Diawara
- Yarom Polsky
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.