Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Hongbin Sun
- Kashif Nawaz
- Prashant Jain
- Stephen Jesse
- Alexander I Kolesnikov
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Bekki Mills
- Bogdan Dryzhakov
- Brian Fricke
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ian Greenquist
- Ilia N Ivanov
- Ilias Belharouak
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- John Wenzel
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mark Loguillo
- Marti Checa Nualart
- Matthew B Stone
- Md Inzamam Ul Haque
- Mina Yoon
- Nate See
- Neus Domingo Marimon
- Nickolay Lavrik
- Nithin Panicker
- Ondrej Dyck
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Radu Custelcean
- Ruhul Amin
- Saban Hus
- Sai Mani Prudhvi Valleti
- Steven Randolph
- Sumner Harris
- Utkarsh Pratiush
- Victor Fanelli
- Vishaldeep Sharma
- Vittorio Badalassi
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Neutron beams are used around the world to study materials for various purposes.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.