Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Adam Willoughby
- Rishi Pillai
- Alexander I Kolesnikov
- Alexei P Sokolov
- Bekki Mills
- Bogdan Dryzhakov
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Christopher Rouleau
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jiheon Jun
- John Wenzel
- Jong K Keum
- Keju An
- Kyle Kelley
- Marie Romedenne
- Mark Loguillo
- Matthew B Stone
- Mina Yoon
- Priyanshi Agrawal
- Radu Custelcean
- Shannon M Mahurin
- Steven Randolph
- Tao Hong
- Tomonori Saito
- Victor Fanelli
- Yong Chae Lim
- Zhili Feng

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Neutron beams are used around the world to study materials for various purposes.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.