Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Neutron Sciences Directorate (11)
Researcher
- Adam Willoughby
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Rishi Pillai
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Bekki Mills
- Brandon Johnston
- Brian Sanders
- Bruce A Pint
- Bruce Hannan
- Charles Hawkins
- Dave Willis
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jeff Foster
- Jerry Parks
- Jiheon Jun
- John F Cahill
- John Wenzel
- Josh Michener
- Joshua Vaughan
- Keju An
- Liangyu Qian
- Loren L Funk
- Luke Chapman
- Marie Romedenne
- Mark Loguillo
- Matthew B Stone
- Paul Abraham
- Peter Wang
- Polad Shikhaliev
- Priyanshi Agrawal
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vilmos Kertesz
- Vladislav N Sedov
- Xiaohan Yang
- Yacouba Diawara
- Yang Liu
- Yong Chae Lim
- Yun Liu
- Zhili Feng

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

Neutron beams are used around the world to study materials for various purposes.