Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Lawrence {Larry} M Anovitz
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Andrzej Nycz
- Chris Masuo
- Diana E Hun
- Luke Meyer
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Andrew G Stack
- Bekki Mills
- Bruce Hannan
- Bryan Maldonado Puente
- Corey Cooke
- Dave Willis
- Gina Accawi
- Gurneesh Jatana
- John Wenzel
- Joshua Vaughan
- Juliane Weber
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Mark M Root
- Matthew B Stone
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Peng Yang
- Polad Shikhaliev
- Ryan Kerekes
- Sai Krishna Reddy Adapa
- Sally Ghanem
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

Neutron beams are used around the world to study materials for various purposes.