Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Venugopal K Varma
- Mahabir Bhandari
- Adam Aaron
- Alexander I Kolesnikov
- Alexei P Sokolov
- Bekki Mills
- Charles D Ottinger
- Christopher Rouleau
- Costas Tsouris
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- John Wenzel
- Jong K Keum
- Keju An
- Mark Loguillo
- Matthew B Stone
- Mina Yoon
- Radu Custelcean
- Rose Montgomery
- Sergey Smolentsev
- Shannon M Mahurin
- Steven J Zinkle
- Tao Hong
- Thomas R Muth
- Tomonori Saito
- Victor Fanelli
- Yanli Wang
- Ying Yang
- Yutai Kato

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

Neutron beams are used around the world to study materials for various purposes.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.