Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Vandana Rallabandi
- Subho Mukherjee
- Gui-Jia Su
- Omer Onar
- Burak Ozpineci
- Joseph Chapman
- Mostak Mohammad
- Nicholas Peters
- Shajjad Chowdhury
- Veda Prakash Galigekere
- Venugopal K Varma
- Hongbin Sun
- Hsuan-Hao Lu
- Joseph Lukens
- Mahabir Bhandari
- Muneer Alshowkan
- Prashant Jain
- Rafal Wojda
- Adam Aaron
- Alexander I Wiechert
- Andrew F May
- Anees Alnajjar
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Brad Johnson
- Brandon A Wilson
- Brian Williams
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Christopher Hobbs
- Costas Tsouris
- Eddie Lopez Honorato
- Erdem Asa
- Fred List III
- Govindarajan Muralidharan
- Himel Barua
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Joanna Mcfarlane
- Jonathan Willocks
- Jon Wilkins
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Lingxiao Xue
- Mahim Mathur
- Mariam Kiran
- Matt Kurley III
- Matt Vick
- Meghan Lamm
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pedro Ribeiro
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Praveen Kumar
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Sergey Smolentsev
- Steven J Zinkle
- Thomas Butcher
- Thomas R Muth
- Tolga Aytug
- Tyler Gerczak
- Ugur Mertyurek
- Vishaldeep Sharma
- Vittorio Badalassi
- Vivek Sujan
- Yanli Wang
- Ying Yang
- Yutai Kato

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

Induction cooktops are becoming popular; however, a limitation is that compatible cookware is required. This is a significant barrier to its adoption.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The invention integrates conductive and inductive charging in a single electric vehicle charger.