Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Joseph Chapman
- Nicholas Peters
- Tomonori Saito
- Bryan Maldonado Puente
- Chad Steed
- Hsuan-Hao Lu
- Joseph Lukens
- Junghoon Chae
- Mahabir Bhandari
- Mingyan Li
- Muneer Alshowkan
- Nolan Hayes
- Sam Hollifield
- Travis Humble
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Anees Alnajjar
- Brian Weber
- Brian Williams
- Catalin Gainaru
- Charles D Ottinger
- Gina Accawi
- Gurneesh Jatana
- Isaac Sikkema
- Joseph Olatt
- Karen Cortes Guzman
- Kevin Spakes
- Kuma Sumathipala
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mariam Kiran
- Mark M Root
- Mary A Adkisson
- Mengjia Tang
- Natasha Ghezawi
- Oscar Martinez
- Peter Wang
- Samudra Dasgupta
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- T Oesch
- Zhenglai Shen

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.