Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam Siekmann
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Bruce Moyer
- Debjani Pal
- Hong Wang
- Hyeonsup Lim
- Jeffrey Einkauf
- Jennifer M Pyles
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Meghan Lamm
- Mike Zach
- Padhraic L Mulligan
- Sandra Davern
- Shajjad Chowdhury
- Steven J Zinkle
- Tim Graening Seibert
- Tolga Aytug
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yutai Kato

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

No readily available public data exists for vehicle class and weight information that covers the entire U.S. highway network. The Travel Monitoring Analysis System, managed by the Federal Highway Administration covers only less than 1% of the US highway network.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

Pairing hybrid neural network modeling techniques with artificial intelligence, or AI, controls has resulted in a unique hybrid system that creates a smart solution for traffic-signal timing.

An ORNL team has developed a method for screening for an immunoregulatory protein, which includes assessing the sequence of a candidate protein to determine if it is an immunoregulatory protein when at least one plasminogen-apple-nematode (PAN) domain with a consensus sequence