Filter Results
Related Organization
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Biological and Environmental Systems Science Directorate (29)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Adam M Guss
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Josh Michener
- Soydan Ozcan
- Brian Post
- Dan Coughlin
- Liangyu Qian
- Nadim Hmeidat
- Steve Bullock
- Tyler Smith
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Brittany Rodriguez
- Carrie Eckert
- Daniel Jacobson
- Halil Tekinalp
- Isaiah Dishner
- Jeff Foster
- Jim Tobin
- John F Cahill
- Kuntal De
- Pum Kim
- Segun Isaac Talabi
- Serena Chen
- Subhabrata Saha
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- Vilmos Kertesz
- Xianhui Zhao
- Xiaohan Yang
- Adam Stevens
- Alex Roschli
- Alex Walters
- Brian Sanders
- Chris Masuo
- Clay Leach
- Craig Blue
- Dali Wang
- Debjani Pal
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Jian Chen
- Joanna Tannous
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kyle Davis
- Mengdawn Cheng
- Merlin Theodore
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Ryan Ogle
- Sana Elyas
- Sanjita Wasti
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Wei Zhang
- William Alexander
- Yang Liu
- Yasemin Kaygusuz
- Zhili Feng

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Important of the application is enabling a cost-effective precision manufacturing method Current technology is limited to injection molded individual pi-joints limiting control of pi-joint direction, this creates hurdle in introducing high volume production to the composite in

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

We have developed bacterial strains that can convert sustainable feedstocks and waste feedstocks into chemical precursors for next generation plastics.

ORNL has identified a panel of novel nylon hydrolases with varied substrate and product selectivity.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Genetic modification of microbes that are thermophiles—ones that grow at elevated temperatures—is extremely challenging. Tools developed for E. coli, a typical host for protein production, typically do not function at elevated temperatures.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).