Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Chad Steed
- Ethan Self
- Jaswinder Sharma
- Junghoon Chae
- Robert Sacci
- Sergiy Kalnaus
- Travis Humble
- Alexey Serov
- Alex Roschli
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Chanho Kim
- Erin Webb
- Evin Carter
- Georgios Polyzos
- Ilias Belharouak
- Jeremy Malmstead
- Jun Yang
- Khryslyn G Araño
- Kitty K Mccracken
- Logan Kearney
- Matthew S Chambers
- Mengdawn Cheng
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Samudra Dasgupta
- Soydan Ozcan
- Tyler Smith
- Vera Bocharova
- Xiang Lyu
- Xianhui Zhao

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.