Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Vivek Sujan
- Adam Siekmann
- Joseph Chapman
- Nicholas Peters
- Omer Onar
- Subho Mukherjee
- Erdem Asa
- Hsuan-Hao Lu
- Isabelle Snyder
- Joseph Lukens
- Muneer Alshowkan
- Soydan Ozcan
- Xianhui Zhao
- Alex Roschli
- Anees Alnajjar
- Brian Williams
- Dali Wang
- Erin Webb
- Evin Carter
- Halil Tekinalp
- Hyeonsup Lim
- Jeremy Malmstead
- Jian Chen
- Kitty K Mccracken
- Mariam Kiran
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Sanjita Wasti
- Shajjad Chowdhury
- Tyler Smith
- Wei Zhang
- Zhili Feng

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi