Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Andrzej Nycz
- Ethan Self
- Jaswinder Sharma
- Kuntal De
- Robert Sacci
- Sergiy Kalnaus
- Udaya C Kalluri
- Aaron Werth
- Alexey Serov
- Alex Walters
- Ali Passian
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Biruk A Feyissa
- Chanho Kim
- Chris Masuo
- Clay Leach
- Debjani Pal
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Harper Jordan
- Ilias Belharouak
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Mark Provo II
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Raymond Borges Hink
- Rob Root
- Srikanth Yoginath
- Varisara Tansakul
- Vera Bocharova
- Vincent Paquit
- Xiang Lyu
- Xiaohan Yang
- Yarom Polsky

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.