Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Vincent Paquit
- Andrzej Nycz
- Clay Leach
- Kuntal De
- Mike Zach
- Udaya C Kalluri
- Akash Jag Prasad
- Alex Walters
- Andrew F May
- Ben Garrison
- Biruk A Feyissa
- Brad Johnson
- Bruce Moyer
- Calen Kimmell
- Canhai Lai
- Charlie Cook
- Chris Masuo
- Christopher Hershey
- Chris Tyler
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Hsin Wang
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Laetitia H Delmau
- Luke Sadergaski
- Nedim Cinbiz
- Padhraic L Mulligan
- Ryan Dehoff
- Sandra Davern
- Tony Beard
- Vladimir Orlyanchik
- Xiaohan Yang
- Zackary Snow

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

The invention provides a gene and methods for maintaining meiotic chromosomal architecture