Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Srikanth Yoginath
- Andrzej Nycz
- Chris Masuo
- James J Nutaro
- Luke Meyer
- Pratishtha Shukla
- Sudip Seal
- Vlastimil Kunc
- William Carter
- Ahmed Hassen
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Ali Passian
- Bekki Mills
- Bruce Hannan
- Dan Coughlin
- Dave Willis
- Harper Jordan
- Jim Tobin
- Joel Asiamah
- Joel Dawson
- John Wenzel
- Josh Crabtree
- Joshua Vaughan
- Keju An
- Kim Sitzlar
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Merlin Theodore
- Nance Ericson
- Pablo Moriano Salazar
- Peter Wang
- Polad Shikhaliev
- Shannon M Mahurin
- Steven Guzorek
- Subhabrata Saha
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Varisara Tansakul
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vipin Kumar
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Neutron beams are used around the world to study materials for various purposes.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.