Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Srikanth Yoginath
- Adam Willoughby
- James J Nutaro
- Pratishtha Shukla
- Rishi Pillai
- Sudip Seal
- Alexander I Kolesnikov
- Alexei P Sokolov
- Ali Passian
- Bekki Mills
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Harper Jordan
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- John Wenzel
- Keju An
- Marie Romedenne
- Mark Loguillo
- Matthew B Stone
- Nance Ericson
- Pablo Moriano Salazar
- Priyanshi Agrawal
- Shannon M Mahurin
- Tao Hong
- Tomonori Saito
- Varisara Tansakul
- Victor Fanelli
- Yong Chae Lim
- Zhili Feng

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Neutron beams are used around the world to study materials for various purposes.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance