Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- (-) User Facilities (28)
Researcher
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Ying Yang
- Yongtao Liu
- Zhili Feng
- Alex Plotkowski
- Blane Fillingim
- Brian Post
- Edgar Lara-Curzio
- Jian Chen
- Jun Qu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Michael Kirka
- Olga S Ovchinnikova
- Rangasayee Kannan
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- David S Parker
- Eric Wolfe
- James A Haynes
- Kashif Nawaz
- Lauren Heinrich
- Meghan Lamm
- Rishi Pillai
- Rob Moore II
- Stephen Jesse
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Vincent Paquit
- Wei Zhang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Ahmed Hassen
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew F May
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Ben Garrison
- Benjamin Lawrie
- Ben Lamm
- Bishnu Prasad Thapaliya
- Bogdan Dryzhakov
- Brad Johnson
- Brandon Johnston
- Brian Fricke
- Brian Sales
- Bryan Lim
- Charles Hawkins
- Chengyun Hua
- Christopher Fancher
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Dali Wang
- David J Mitchell
- David Nuttall
- Dean T Pierce
- Debangshu Mukherjee
- Ethan Self
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gerd Duscher
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Hsin Wang
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- James Klett
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jewook Park
- Jiaqiang Yan
- Jiheon Jun
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Kai Li
- Khryslyn G Araño
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marie Romedenne
- Marm Dixit
- Marti Checa Nualart
- Matthew Brahlek
- Matthew S Chambers
- Md Inzamam Ul Haque
- Mike Zach
- Mina Yoon
- Nancy Dudney
- Nedim Cinbiz
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Nidia Gallego
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peter Wang
- Petro Maksymovych
- Philip Bingham
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Steven Randolph
- Sumner Harris
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Utkarsh Pratiush
- Venkatakrishnan Singanallur Vaidyanathan
- Venugopal K Varma
- Vipin Kumar
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiaobing Liu
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto
- Zhiming Gao

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance

In scientific research and industrial applications, selecting the most accurate model to describe a relationship between input parameters and target characteristics of experiments is crucial.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.