Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Michael Kirka
- Tomonori Saito
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Bekki Mills
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Diana E Hun
- Easwaran Krishnan
- James Haley
- James Manley
- Jamieson Brechtl
- Joe Rendall
- John Wenzel
- Karen Cortes Guzman
- Kashif Nawaz
- Keju An
- Kuma Sumathipala
- Mark Loguillo
- Matthew B Stone
- Mengjia Tang
- Muneeshwaran Murugan
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shannon M Mahurin
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Tao Hong
- Victor Fanelli
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zoriana Demchuk

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Neutron beams are used around the world to study materials for various purposes.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.