Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Neutron Sciences Directorate (11)
Researcher
- Ryan Dehoff
- Amit K Naskar
- Andrzej Nycz
- Chris Masuo
- Jaswinder Sharma
- Logan Kearney
- Luke Meyer
- Michael Kirka
- Michael Toomey
- Nihal Kanbargi
- Vincent Paquit
- William Carter
- Adam Stevens
- Ahmed Hassen
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Arit Das
- Bekki Mills
- Benjamin L Doughty
- Blane Fillingim
- Brian Post
- Bruce Hannan
- Christopher Bowland
- Christopher Ledford
- Clay Leach
- Dave Willis
- David Nuttall
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- James Haley
- John Wenzel
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Polad Shikhaliev
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Shannon M Mahurin
- Sudarsanam Babu
- Sumit Gupta
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Uvinduni Premadasa
- Vasilis Tzoganis
- Vasiliy Morozov
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- Victor Fanelli
- Vipin Kumar
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Yacouba Diawara
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Yun Liu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Neutron beams are used around the world to study materials for various purposes.