Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Ryan Dehoff
- Vincent Paquit
- Andrzej Nycz
- Clay Leach
- Kuntal De
- Michael Kirka
- Mike Zach
- Udaya C Kalluri
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Biruk A Feyissa
- Blane Fillingim
- Brad Johnson
- Brian Post
- Bruce Moyer
- Charlie Cook
- Chris Masuo
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- David Nuttall
- Debjani Pal
- Hsin Wang
- James Haley
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Laetitia H Delmau
- Luke Sadergaski
- Nedim Cinbiz
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Tony Beard
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

The technologies provide a system and method of needling of veiled AS4 fabric tape.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.