Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ali Passian
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Alexander I Kolesnikov
- Bekki Mills
- Bryan Maldonado Puente
- Claire Marvinney
- Corey Cooke
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- John Holliman II
- John Wenzel
- Mark Loguillo
- Mark M Root
- Matthew B Stone
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Srikanth Yoginath
- Varisara Tansakul
- Victor Fanelli

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.