Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Sergei V Kalinin
- Vincent Paquit
- Akash Jag Prasad
- Anton Ievlev
- Bogdan Dryzhakov
- Bruce Moyer
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Debjani Pal
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jeffrey Einkauf
- Jennifer M Pyles
- Justin Griswold
- Kevin M Roccapriore
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mike Zach
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Ryan Dehoff
- Sandra Davern
- Stephen Jesse
- Steven Randolph
- Vladimir Orlyanchik
- Yongtao Liu
- Zackary Snow

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.