Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Ahmed Hassen
- Greg Larsen
- James Klett
- Lawrence {Larry} M Anovitz
- Nadim Hmeidat
- Robert Sacci
- Trevor Aguirre
- Vlastimil Kunc
- Ethan Self
- Jaswinder Sharma
- Sergiy Kalnaus
- Steven Guzorek
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brittany Rodriguez
- Chanho Kim
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Felipe Polo Garzon
- Georgios Polyzos
- Ilias Belharouak
- John Lindahl
- Jordan Wright
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Kirka
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Sai Krishna Reddy Adapa
- Sana Elyas
- Subhabrata Saha
- Tony Beard
- Tyler Smith
- Vera Bocharova
- Vipin Kumar
- Xiang Lyu

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.

Current battery materials such as silicon suffer from poor ion and electron transport due to non-optimal wiring. This invention facilitates particle interconnectedness to facilitate ion motion and electron transport overcoming poor assembly.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.