Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Beth L Armstrong
- Ritin Mathews
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Tomonori Saito
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- Ethan Self
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Rangasayee Kannan
- Robert Sacci
- Ryan Dehoff
- Scott Smith
- Sergiy Kalnaus
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alexey Serov
- Alex Roschli
- Amanda Musgrove
- Amir K Ziabari
- Amit K Naskar
- Amit Shyam
- Amy Elliott
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Chanho Kim
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Emma Betters
- Felipe Polo Garzon
- Fred List III
- Georgios Polyzos
- Gordon Robertson
- Greg Corson
- Ilias Belharouak
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Keith Carver
- Khryslyn G Araño
- Liam White
- Logan Kearney
- Luke Meyer
- Matthew S Chambers
- Michael Borish
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sai Krishna Reddy Adapa
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiang Lyu
- Yukinori Yamamoto

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.