Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Ali Passian
- Joseph Chapman
- Kyle Kelley
- Nicholas Peters
- Rama K Vasudevan
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Sergei V Kalinin
- Stephen Jesse
- An-Ping Li
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Williams
- Claire Marvinney
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Joel Asiamah
- Joel Dawson
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Mariam Kiran
- Marti Checa Nualart
- Maxim A Ziatdinov
- Nance Ericson
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Saban Hus
- Srikanth Yoginath
- Steven Randolph
- Varisara Tansakul
- Yongtao Liu

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

A quantum communication system enabling two-mode squeezing distribution over standard fiber optic networks for enhanced data security.

An ultrabroadband, polarization-entangled photon source for C+L-band quantum networks, enabling adaptive, high-fidelity entanglement distribution.

Technologies directed quantum spectroscopy and imaging with Raman and surface-enhanced Raman scattering are described.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.