Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Adam M Guss
- Josh Michener
- Liangyu Qian
- Andrzej Nycz
- Austin L Carroll
- Blane Fillingim
- Brian Post
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Lauren Heinrich
- Peeyush Nandwana
- Serena Chen
- Sudarsanam Babu
- Thomas Feldhausen
- Udaya C Kalluri
- Xiaohan Yang
- Yousub Lee
- Alexander I Wiechert
- Alex Walters
- Biruk A Feyissa
- Carrie Eckert
- Chris Masuo
- Clay Leach
- Costas Tsouris
- Debangshu Mukherjee
- Debjani Pal
- Gerald Tuskan
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Joanna Tannous
- Kyle Davis
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Paul Abraham
- Radu Custelcean
- Ramanan Sankaran
- Vilmos Kertesz
- Vimal Ramanuj
- Vincent Paquit
- Wenjun Ge
- William Alexander
- Yang Liu

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

We have developed bacterial strains that can convert sustainable feedstocks and waste feedstocks into chemical precursors for next generation plastics.

ORNL has identified a panel of novel nylon hydrolases with varied substrate and product selectivity.

Genetic modification of microbes that are thermophiles—ones that grow at elevated temperatures—is extremely challenging. Tools developed for E. coli, a typical host for protein production, typically do not function at elevated temperatures.

The invention provides a gene and methods for maintaining meiotic chromosomal architecture