Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Aaron Myers
- Bogdan Dryzhakov
- Bruce Moyer
- Christopher Rouleau
- Costas Tsouris
- Debjani Pal
- Eve Tsybina
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jeffrey Einkauf
- Jennifer M Pyles
- Jong K Keum
- Justin Cazares
- Justin Griswold
- Kuntal De
- Kyle Kelley
- Laetitia H Delmau
- Luke Sadergaski
- Matt Larson
- Mike Zach
- Mina Yoon
- Padhraic L Mulligan
- Radu Custelcean
- Sandra Davern
- Steven Randolph
- Viswadeep Lebakula

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

MAPSTER is a lightweight software package that automatically searches deployed laptops for geospatial data and complies metadata (GPS coordinates, file size, etc) at a central checkpoint.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.
Aromas play a significant role in the quality and safety of food, beverages, and even manufactured products. The ability to detect and interpret these aromas accurately can enhance product safety and consumer satisfaction.