Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Sam Hollifield
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Chad Steed
- Diana E Hun
- Junghoon Chae
- Mingyan Li
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Travis Humble
- Vincent Paquit
- Aaron Werth
- Alexander I Wiechert
- Ali Passian
- Benjamin Manard
- Brian Weber
- Bryan Maldonado Puente
- Charles F Weber
- Corey Cooke
- Costas Tsouris
- Emilio Piesciorovsky
- Gary Hahn
- Gina Accawi
- Govindarajan Muralidharan
- Gurneesh Jatana
- Harper Jordan
- Isaac Sikkema
- Jason Jarnagin
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark M Root
- Mark Provo II
- Mary A Adkisson
- Matt Vick
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Peter Wang
- Raymond Borges Hink
- Rob Root
- Rose Montgomery
- Ryan Kerekes
- Sally Ghanem
- Samudra Dasgupta
- Srikanth Yoginath
- Thomas R Muth
- T Oesch
- Vandana Rallabandi
- Varisara Tansakul
- Venugopal K Varma
- Yarom Polsky

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Modern automobiles are operated by small computers that communicate critical information via a broadcast-based network architecture called controller area network (CAN).

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.