Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Amit K Naskar
- Omer Onar
- Sam Hollifield
- Adam Siekmann
- Chad Steed
- Erdem Asa
- Jaswinder Sharma
- Junghoon Chae
- Logan Kearney
- Michael Toomey
- Mingyan Li
- Nihal Kanbargi
- Subho Mukherjee
- Travis Humble
- Aaron Werth
- Ali Passian
- Arit Das
- Benjamin L Doughty
- Brian Weber
- Christopher Bowland
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Harper Jordan
- Holly Humphrey
- Hyeonsup Lim
- Isaac Sikkema
- Isabelle Snyder
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Nance Ericson
- Oscar Martinez
- Raymond Borges Hink
- Robert E Norris Jr
- Rob Root
- Samudra Dasgupta
- Santanu Roy
- Shajjad Chowdhury
- Srikanth Yoginath
- Sumit Gupta
- T Oesch
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Yarom Polsky

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.