Skip to main content

Utility-scale Building Type Assignment Using Smart Meter Data...

Publication Type
Conference Paper
Book Title
Proceedings of the Building Simulation 2021 Conference
Publication Date
Publisher Location
Conference Name
Building Simulation Conference (BuildSim 2021)
Conference Location
Bruges, Belgium
Conference Sponsor
International Building Performance Simulation Association (IBPSA)
Conference Date

United States building energy use accounted for 40% of total energy use, 74% of peak demand, and $412 billion in 2019. Building energy modeling allows researchers to simulate building physics, gain insights into possible energy/demand saving opportunities, and assess cost-effective resilience amidst climate change. Many building features needed to create building energy models are readily available such as 2D footprints and LiDAR (height). A critical feature that is not generally obtainable is the building type. In partnership with a utility, a years worth of real-world, 15-minute electrical use data has been examined. The smart meter data is compared to 97 different prototype building energy models to assign building type. Real-world considerations including data preparation, quality assurance, and handling of missing values for advanced metering infrastructure data are addressed. Euclidean distance for pattern-matching of energy use, dynamic time warping, and time-window statistics with machine learning are compared for determining building type from measured electricity use.