Abstract
In this study, we performed fracture toughness characterization of ten neutron-irradiated Eurofer97 variants using precracked miniature multi-notch bend bar (M4CVN) specimens based on the Master Curve method in the ASTM E1921 standard. The neutron irradiation was performed in the flux trap position of the High Flux Isotope Reactor (HFIR) of the Oak Ridge National Laboratory (ORNL) with the nominal irradiation temperature of 300°C and irradiation dose of 2.5 displacements per atom (dpa). Depending on the irradiation temperature and materials, we observed different degrees of irradiation hardening and embrittlement for ten Eurofer97 variants. The upper shift in the Master Curve reference temperature T0Q vs. the increase in Vickers microhardness values showed a liner relationship for only a few materials indicating different irradiation responses of the Eurofer97 variants.