Skip to main content
SHARE
Publication

Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion...

Publication Type
Journal
Journal Name
Journal of Power Sources
Publication Date
Page Number
230429
Volume
515
Issue
12

Increasing lithium-ion battery gravimetric energy density to > 300 Wh/kg, while simultaneously meeting a cost target of $80/kWh, is of paramount importance to increasing the driving range and affordability of electric vehicles. One way to address this goal is to reduce inactive components by increasing electrode areal capacities, but conventional thick electrode designs typically perform poorly at high discharge rates due to Li+ mass transport limitations. Here we compare the rate capability and cycle life of NMC 532/graphite pouch cells made with five different thick cathode and anode designs paired together in 25 combinations. We find that using different particle sizes to structure both the cathode and anode architectures in two-layer configurations results in a 2X capacity improvement over the worst-performing combination at high discharge rates (97 vs. 46 mAh/g at 2C). These different cathode/anode designs also translate to different cycle life performance, with many cells cycled at C/2 achieving ∼80% capacity retention after 1000 cycles, and cells cycled at 2C showing different degrees of capacity fade. Overall, these results demonstrate that simple, scalable changes in electrode design can significantly improve the performance of thick electrodes for high energy density batteries.