For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For significant impacts to the fields of synthetic biology and biological interfaces, innovations in the use of chemistry and nanotechnology to develop a molecular mechanistic understanding of complex biological systems, and pioneering approaches in chemical imaging through integration with mass spectrometry-based detection.
For revolutionizing the understanding of radiation interactions with metals and ceramic in nuclear energy applications and outstanding leadership and mentoring of the next generation of scientists.
For his pioneering efforts in silicon carbide–based power electronics, which have paved the way for vehicle and grid infrastructure advancements, enabling transformational achievements in wireless power transfer and electric drivetrain applications, and for the continuing significant impact his accomplishments will have on the global move toward the electrification and decarbonization of the mobility sector.
For experimental studies in atomic and molecular physics, particularly developments in the field of nonlinear laser spectroscopy and the physics of negative ions
Mook has conducted neutron scattering research on a broad spectrum of materials. He is best known for his pioneering research on the magnetic excitations of transition metal ferromagnets and the observation of itinerant electron effects in these materials.
For his internationally recognized work in the theory of alloys and his pioneering applications of massively parallel computing to first-principles calculations of the properties of materials.