For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For pioneering accomplishments in the fields of global optimization, artificial neural networks, and high performance computing based on quantum devices.
For distinguished contributions to energy policy research and analysis for transportation, and for advancing understanding of the transportation sector's role in energy and environmental concerns.
For fundamental research establishing fission-imposed limits on rotating nuclei, and for extensive studies of heavy ion reactions from low to ultrarelativistic energies.
For applying molecular beam techniques to study chemically reactive collisions, helping to lay the foundation for the present field of chemical dynamics, and for pioneering studies in accelerator-based atomic physics, ion-solid interactions, and the channeling of ions, electrons and positrons in crystalline solids.
For fundamental contributions to many areas of theoretical solid-state physics that directly relate to experimental programs, including the electronic structure and magnetism of transition and rare-earth metals, metal-electrolyte interfaces, superconductivity, and physical properties of heavy fermion, mixed valent, and fractal materials
For discoveries of fundamental importance in mammalian genetics, as well as for studies of genetic and developmental effects in mice, which have provided a broad basis for assessment of the genetic risk to humans from radiation and chemicals, including the development of genetic and early developmental tests now used worldwide.