For leadership and pioneering research in the fundamental effects of radiation on a broad range of metals and ceramics applicable to fission and fusion energy systems.
For applying molecular beam techniques to study chemically reactive collisions, helping to lay the foundation for the present field of chemical dynamics, and for pioneering studies in accelerator-based atomic physics, ion-solid interactions, and the channeling of ions, electrons and positrons in crystalline solids.
For discoveries of fundamental importance in mammalian genetics, as well as for studies of genetic and developmental effects in mice, which have provided a broad basis for assessment of the genetic risk to humans from radiation and chemicals, including the development of genetic and early developmental tests now used worldwide.
For theoretical research on the electronic and vibronic structures and optical properties of defects in ionic crystals, and for work at the forefront of the rapidly developing field of laser annealing of semiconductors, leading to advances in the photovoltaic conversion of solar energy.
For original studies of the genetic effects of radiation in mammals. A world authority on mammalian mutagenesis, he and co-workers provided the experimental basis for estimating the genetic hazards of radiation to man and for the corresponding recommendations of national and international standards bodies