For research leading to the development of new materials and to the solution of a wide range of fundamental and applied problems in solid-state science through the application of modern methods for the synthesis and characterization of ceramics, glasses, and alloys and the growth of single crystals.
For playing a substantial and lead role in developing and establishing the structural design methodology that is vital to safe and reliable nuclear power, including the development of high-temperature design analysis methods and code rules that are used worldwide.
For basic studies in the fracture of and toughening mechanisms in ceramics and ceramic composites, in the establishment of the relationships between microstructure and composition and mechanical behavior, and in the development of advanced ceramic materials.
For fundamental contributions to many areas of theoretical solid-state physics that directly relate to experimental programs, including the electronic structure and magnetism of transition and rare-earth metals, metal-electrolyte interfaces, superconductivity, and physical properties of heavy fermion, mixed valent, and fractal materials
For advances in neutron and gamma-ray dosimetry, the transport of electricity through gases, and the development of laser-based one-atom detection with applications in nuclear physics, solar neutrino research, and oceanic, geologic, and environmental research
For research on the processes involved in the induction of mutations, elucidating the roles and sequences of DNA repair and replication in converting radiation or chemical damage into mutations, and for contributions to the understanding of biological control mechanisms at the cellular level
For work at the forefront of neutron scattering research, for early work on the fundamentals of scattering from ferromagnetic materials, and for significant contributions to understanding the complex magnetic structures and properties of elements and compounds such as the heavy rare-earth metals
For work in magnetic resonance, including the early evaluation of spins and moments of radioactive nuclei and experiments in nuclear quadrupole spectroscopy, and for the application of electron spin resonance to study free radicals trapped in solids and short-lived radicals in pyrolyzed fluids